Известно, что разные курсы и разные преподаватели по-разному трактуют множество натуральных чисел. Где-то утверждается, что оно начинается с единицы, где-то его отсчитывают с нуля.
На то и другое есть свои резоны. В преподавании классического анализа удобнее считать с единицы (тогда во многих ситуациях без всяких оговорок оказывается невозможным деление на ноль), алгебраистам же удобнее с нулём — тогда натуральные числа образуют полугруппу как относительно сложения, так и относительно умножения (правда, единичными элементами для этих операций будут выступать разные числа).
На сáмом деле вопрос о вхождении или невхождении нуля в натуральные числа совершенно непринципиален: легко показывается, что два соответствующих множества эквивалентны между собой. Гораздо интереснее другое: чрезвычайно долго натуральным числом (и числом вообще!) не считалась единица!